AI GFX Topic Genre All
 
State of the Industry
Architecture
State Machines
Learning
Scripting
A* Pathfinding
Pathfinding / Movement
Flocking / Formations / Coordinated Movement
Multi-Agent Cooperation
Strategy / Tactical
Animation Control
Camera Control
Randomness
Player Prediction
Fuzzy Logic
Neural Nets
Genetic Algorithms
Natural Language Processing
AI Game Programming Wisdom
AI Game Programming Wisdom 2
Game Programming Gems
Game Programming Gems 2
Game Programming Gems 3
Game Programming Gems 4
GDC Proceedings
Game Developer Magazine
Gamasutra


Home    By Topic    By Genre    All Articles    Contact
Neural Nets


Artificial Neural Networks on Programmable Graphics Hardware
Thomas Rolfes
Game Programming Gems 4, 2004.
Topics: Neural Networks; Genres: General
Abstract: This article shows how an artificial neural network can be implemented using a GPU-based BLAS level 3 style single-percision general matrix-matrix product (SGEMM) and an activation function pixel shader under Direct3D, version 9.

How to Build Neural Networks for Games

Penny Sweetser (School of ITEE, University of Queensland)
AI Game Programming Wisdom 2, 2003.
Topics: Neural Networks, Learning; Genres: General
Abstract: Neural networks are a machine learning technique inspired by the human brain. They are a flexible technique that has a wide range of applications in a variety of industries. This article will first introduce neural networks, describing their biological inspiration. Then, it will describe the important components of neural networks and demonstrate how they can be implemented with example code. Next, it will explain how neural networks can be trained, both in-game and prior to shipping, and how a trained neural network can be used for decision-making, classification and prediction. Finally, it will discuss the various applications of neural networks in games, describing previous uses and giving ideas for future applications. Each of these sections will be illustrated with relevant game examples and sample code where appropriate.

Neural Networks in Plain English
Mat Buckland (AI-Junkie)
AI-Junkie.com, 2003.
Topics: Learning, Neural Networks; Genres: General
Abstract: I�ll start off by describing what a neural net actually is and what it�s architecture is, then I�ll do a little theory on how we get it to perform for us but I�ll try to use as little maths as possible. (Having some understanding of mathematics is impossible to avoid however and the deeper you get into this topic the more mathematics you are going to have to learn). Finally, we�ll get to the fun bit. I�ll come up with a little project I will program and take you through one step at a time. It will be in this last phase of the tutorial where I hope you get the same "eureka" feeling for neural nets as I did back in rainy old Scotland. Until then just sit back, absorb and be patient.

Imitating Random Variations in Behavior using a Neural Network

John Manslow
AI Game Programming Wisdom, 2002.
Topics: Learning, Neural Networks; Genres: General
Abstract: As game AI has increased in sophistication, it has become possible to create computer controlled agents that display remarkably human-like behavior. One of the few indications that an agent is non-organic is the frequently clinical nature of their actions, an effect exacerbated by the often ad hoc mechanisms used to add random variations. This article shows how neural networks can be taught to imitate the actual random variations in behavior that are exhibited by real people. This makes it possible to simulate the playing styles of different sports personalities in unprecedented detail - even the extent to which, for example, the cueing direction and position of the cue ball relative to the cushion affect the accuracy of a pool player's shots. The article assumes minimal knowledge of neural networks and illustrates the techniques through their application to a real game. The CD that accompanies the book contains all the source code for the game, along with that for the neural network class, which is designed as a plug-in component that can easily be transferred to other applications.

The Dark Art of Neural Networks
Alex J. Champandard (Artificial Intelligence Depot)
AI Game Programming Wisdom, 2002.
Topics: Learning, Neural Networks; Genres: General
Abstract:

Using a Neural Network in a Game: A Concrete Example

John Manslow
Game Programming Gems 2, 2001.
Topics: Neural Networks, Learning; Genres: General
Abstract: Neural networks are a powerful artificial intelligence technique that are based on an abstraction of the neurocomputational functions of the human brain. One of their most important characteristics is that they can learn by example, and do not need to be programmed in the conventional sense. For example, Codemasters (the developers of Colin McRae Rally 2.0) discovered that a neural network could learn how to drive a rally car by imitating the developers' play, thus avoiding the need to construct a complex set of rules. This article guides the reader through all the steps that are necessary to incorporate neural networks into their own game. Assuming no prior understanding, the article presents a case study of applying one of the most popular, easy to use, and effective neural networks, the multilayer perceptron, to a real game. All the steps required for successful neural network development are described, as are the most common problems, and their solutions. The CD that accompanies the book includes all the source code for the game, and the neural network class that lies at the heart of its AI. The class is designed to be used as a drop-in module in other games and hence contains no application specific code.

A Neural-Net Primer

Andr� LaMothe (Xtreme Games)
Game Programming Gems, 2000.
Topics: Neural Networks; Genres: General
Abstract:

 
Survey of best prices
Survey of best prices
AI Game Programming Wisdom

AI Game Programming Wisdom 2

Game
Programming
Gems


Game
Programming
Gems 2


Game
Programming
Gems 3


Game
Programming
Gems 4



Home