Home    General Programming    Artificial Intelligence    Math    Physics    Graphics    Networking    Audio Programming   
Audio/Visual Design    Game Design    Production    Business of Games    Game Studies    Conferences    Schools    Contact   
State of the Industry
State Machines
A* pathfinding
Pathfinding / Movement
Group Movement
Group Cooperation
Strategy / Tactical
Animation Control
Camera Control
Player Prediction
Fuzzy Logic
Neural Nets
Genetic Algorithms
Natural Language
Tips and Advice
Tools and Libraries
Genre: RTS / Strategy
Genre: RPG / Adventure
Genre: FPS / Action
Genre: Racing
Genre: Sports
Genre: Board Games
Open Source
All Articles
Game Programming Gems
Game Programming Gems 2
Game Programming Gems 3
Game Programming Gems 4
Game Programming Gems 5
Game Programming Gems 6
Game Programming Gems 7
AI Game Programming Wisdom
AI Game Programming Wisdom 2
AI Game Programming Wisdom 3
AI Game Programming Wisdom 4
AI Summit GDC 2009
GPU Gems
GPU Gems 2
GPU Gems 3
Massively Multiplayer Game Development
Massively Multiplayer Game Development 2
Secrets of the Game Business
Introduction to Game Development
GDC Proceedings
Game Developer Magazine

Artificial Intelligence: Genre - Sports

Custom Tool Design for Game AI

P.J. Snavely (Sony Computer Entertainment America)
AI Game Programming Wisdom 3, 2006.
Abstract: Artificial intelligence systems in games have become so complex that often one engineer cannot write the entire structure alone. Using the Basketball Artificial Intelligence Tool (BAiT) we were able to integrate the artificial intelligence for NBA 2007 based entirely upon designer data entry and manipulation. While this approach has many positives there are also some drawbacks to implementing a system like this. There are also some necessary precautions that one should take before even attempting this process.

Writing AI as Sport

Peter Cowling (University of Bradford, UK)
AI Game Programming Wisdom 3, 2006.
Abstract: AI has been a sport for many decades. In this article we discuss some of the major competitions between AI game players and discuss the impact on the media and the public of success in these competitions. We discuss some of our own experiences in running AI competitions and provided pointers to running a successful competition. We consider non-programmatic ways that AI has been created, and how this might be use in a new genre of game where the player trains the AI for each player rather than controlling them directly.

Semi-Automated Gameplay Analysis by Machine Learning

Finnegan Southey, Gang Xiao, Robert C. Holte, Mark Trommelen (University of Alberta), John Buchanan (Electronic Arts)
PDF link, Artificial Intelligence and Interactive Digital Entertainment (AIIDE), 2005.
Abstract: While presentation aspects like graphics and sound are important to a successful commercial game, it is likewise important that the gameplay, the non-presentational behaviour of the game, is engaging to the player. Considerable effort is invested in testing and re.ning gameplay throughout the development process. We present an overall view of the gameplay management problem and, more concretely, our recent research on the gameplay analysis part of this task. This consists of an active learning methodology, implemented in software tools, for largely automating the analysis of game behaviour in order to augment the abilities of game designers. The SAGA-ML (semi-automated gameplay analysis by machine learning) system is demonstrated in a real commercial context, Electronic Arts' FIFA'99 Soccer title, where it has identi.ed exploitable weaknesses in the game that allow easy scoring by players.

Dead Reckoning in Sports and Strategy Games

Fran�ois Dominic Laram�e
AI Game Programming Wisdom 2, 2003.
Abstract: Dead reckoning is a set of techniques used to calculate the motion of objects not entirely within an agent's control. This article explores the equations required to implement dead reckoning, and shows how it can apply in a variety of game contexts, for example the calculation of the optimal trajectory for a pass or a shot in a sports simulation, as well as multiple wargame problems.

Building a Sports AI Architecture

Terry Wellmann (High Voltage Software, Inc.)
AI Game Programming Wisdom 2, 2003.
Abstract: This article focuses on the sport of basketball; however, the concepts presented in the article are applicable to a wide variety of games. The goal of the article is to give the reader a solid understanding about the things to consider when designing an architecture for a sports game. The article also describes the concepts and critical components necessary to successfully design an AI system that is easy to understand, build, maintain and extend.

The article covers, in detail, the concepts of agent plans, team management, agent AI, and touches on the critical points of agent mechanics. The architecture presented in the article serves as the foundation for Microsoft's NBA Inside Drive franchise and has been used in three shipped versions of the game.

Simulating Real Animal Behavior

Sandeep V. Kharkar (Microsoft)
AI Game Programming Wisdom, 2002.

Agent Cooperation in FSMs for Baseball

P.J. Snavely (Acclaim Entertainment)
AI Game Programming Wisdom, 2002.

Intercepting a Ball

Noah Stein (Vision Scape Interactive)
AI Game Programming Wisdom, 2002.

40% off discount
"Latest from a must have series"
Gems 7

"Cutting-edge graphics techniques"
GPU Gems 3

"Newest AI techniques from commercial games"
AI Game
Wisdom 4